
Bivariate distributions : Farlie-Gumbel-Morgenstern copula
� Dependence functions are used to construct joint distributions with fixed marginals. A bivariate copula c(X,Y) is a bivariate probability density function defined on the unit square [0,1]2 (each marginal law is a uniform 

U[0,1] dependent of the other) which connects marginal distributions in a way giving as a result a joint probability. It has the advantage of characterizing, mixing and modelling the whole dependence structure between 
random variables, whatever the marginal distributions.

� We compare graphically marginal, conditional and bivariate entropies and (total or generalized) variances of copulas. We take there the Farlie-Gumbel Mogenstern (FGM) copula c(X,Y) =1+a(2x-1)(2y-1) with a in [-1,1] 
in terms of entropy or variance reduction, this copula is symetric in x and y.

� Entropy and variance orderings of the FGM copula hold (only the trace
has a different behavior than bivariate entropy).

� So, we can class entropy and variance similarly for the Farlie-Gumbel-
Morgenstern copula. 

FGM marginal entropies and variances

� Marginal entropies H(X), H(Y)  and 
variances V(X), V(Y) are constant 
for all value of the parameter a.
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ENTROPY-BASED SENSITIVITY ANALYSIS IN 
HEALTH RISK ASSESSMENT

Entropy as sensitivity analysis measure
� Human exposure to environmental pollution and its associated adverse health consequences are 

recognized as posing major threats to occupational and public health. For realistic decision-making in 
risk management, the reliability and quality of exposure and risk model outputs, which depend on 
uncertainty, must be known. Usually, output uncertainty is described in terms of variance. Variance is 
popular in sensitivity analysis because of its simplicity and its historical development; statisticians also 
use it as a reference measure of the dispersion.

� Other measures may be used to characterize the uncertainty of a model output Y related to input 
variables. We criticize the use of variance Var(Y) as a measure of output uncertainty and proposed to 
use entropy,                        . Entropy is an information criterion which measures the amount of 
uncertainty and information content that is implied by a probability distribution.

Univariate distributions : Ratio of two normal variab les
� Let X ~ N (0,σX) and Y ~ N (0,σY) two independent normal variables. The ratio Z = X/Y follows a Cauchy distribution Cauchy (0,σX/σY) where the primer parameter is a location parameter and the second σX/σY is a

scale parameter. The Cauchy distribution has no mean, no variance nor higher moments.

� However, the entropy is well defined ( H (Z) = log (4πσX/σY) ) and depends only on the two normal law variances. Equally, H(X,Y)  is a scalar value : H (X,Y) = 1+log(2π)+log(σX /σY).

� Consequently, variance does not permit to compare vector (X,Y) and variable ratio X /Y whereas entropie does.

� Other example, the variance of the T-Student distribution for some degrees of freedom does not exist, while its entropy always does.

Conclusion and perspectives :
� Entropy captures uncertainty and allows to oppose « Entropy against variance ».

� To motivate the use of entropy, we explore and compare its role in ranking distributions from univariate to multivariate cases via copulas. We present three typical examples.

� Entropy exists for the Cauchy distribution, contrarily to the variance. In terms of reduction of measure, the concept of entropy reduction is more meaningful than variance reduction in the multivariate normal distribution 
when we reduce the dimension. Results on variance and entropy for the Farlie-Gumbel-Morgenstern copula do not permit the same conclusion.

� Extension and generalization to the multivariate case is a challenging research topic that needs to be explored to promote entropy in sensitivity analysis.
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Entropy can be prefered to variance?

� Unlike the variance, entropy has the advantage of depending on many more parameters than just the 2nd

moment which allows only to measure a dispersion around the mean. Consequently, entropy depends on 
much more information about a vector of random variables than its variance.

� « Variance is finite » (well defined and not infinite) implies « entropy is finite » but the converse may not 
hold.

� To justify the use of entropy in sensitivity analysis, we examine the role of variance and entropy in 
ordering distributions in univariate, bivariate and multivariate case.

FGM conditional entropy

� The two conditional entropies 
H(X|Y) and H(Y|X) behave likewise
to conditional variances.

How to compare entropy and variance in dimension 2 a nd superior ?
� The entropy is a scalar measure of a distribution. On the contrary, the variance approach in dimension 2 or more leads to a matrix of variance-covariance Cov(.), and comparisons with entropy must repose on 

summary measures, such as the generalized variance, the determinant |Cov(.)|, or the total variance, the trace tr(Cov(.)), of the matrix Cov(.).

Multivariate distributions : n-variate normal law

� Noting and                                   .

� Let                                           and               where .

� We want to compare the effect of dimension reduction from to      in terms of entropy and variance.

� The matrix can be rewritten as                          and we note                                 .

� We show that :                                                              and                                          .

� As                                decreases rapidly as     increases, we conclude that is almost always verified.

� Entropy reduction is obtained as opposed to reduction variance.

Entropy and variance rankings

FGM bivariate entropy and total variance

� Bivariate entropy H(X,Y) varies 
with the parameter a whereas the 
trace tr(Cov(X,Y)) is constant.
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FGM conditional variance

� The two conditional variances 
Cov(X|Y) and Cov(Y|X) rises for a
in [-1,0] and falls for a in [0,1], in 
the same manner than |Cov(X,Y)|.

FGM generalized variance

� Likewise, |Cov(X,Y)| increases
when a is in [-1,0] and decreases
when a is in [0,1] in the same
manner than H(X,Y).


