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“Progress in science depends on new 
techniques, new discoveries, and new 

ideas, probably in that order”

Sydney Brenner, Nature, June 5, 1980

“But one thing is certain: to understand 
the whole you must study the whole”

Henrik Kacser, 1986



Synopsis of talk

• Biology is changing – a new philosophy of Systes
Biology

• SBML, Taverna and modelling in modern systems 
biology 

• Sensitivity analyses of the NF-κB signal 
transduction pathway

• New ways of encoding information in biology
• Conclusion

New techniques, new discoveries, and new ideas



Pre- and post-genomics
FUNCTION/

PHENOTYPE 

GENE

PREPOST

BUT THE SYSTEMATIC GENOME SEQUENCING PROGRAMMES 
SHOWED WE HAD MISSED ~50% OF THE GENES EVEN IN WELL-

STUDIED ORGANISMS
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The cycle of knowledge
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Westerhoff & Palsson NBT 22, 1249-52 (2004)



The importance of technology 
development is explicit

The importance of technology 
development is barely recognised

Computation and modelling at the coreLittle need for computation

Largely inductiveLargely hypothetico-deductive

Holistic/syntheticReductionist

QuantitativeQualitative

Study systems as a wholeStudy molecules in isolation

The new systems biologyTraditional molecular biology

Molecular Systems Biology



One view of systems biology

Computation/
Modelling

Experiment

Technology
Theory



One view of systems biology
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Genome-wide
Protein-metabolite
binding constants

Genome-wide
Protein-protein

Binding constants

Genome-wide
High-throughput
Enzyme kinetics

Transcriptome
Proteome

Metabolome

Modelling: ODEs, Sensitivity analyses, Constraint-based optimisation, 
Solving inverse problems, novel strategies

Genome-wide
Protein-inhibitor
binding constants

(Chemical genetics)

SYSTEMS BIOLOGY

Database, schema
standards

Model organism/ 
system of choice

Regulatory interactions



‘Bottom-up’ Systems Biology pipeline (dry)
1. Qualitative (‘structural’) model – who talks to 

whom as substrate, product or effector  
2. Quantitative model including ‘real’ or 

approximate equations describing individual steps 

3. Parametrisation of those equations 
4. Run the model and assess its most important 

parameters
5. Iteratively , with wet data, GOTO 1….



Systems biology experiments 
(including the wet side) ….

• Set up a well-defined system
• Effect systematic perturbations (genetic, 

environmental, chemical)
• Measure a time series of as many concentrations of 

variables, especially RNAs, proteins, metabolites (the 
’omes) as possible

• Model the system and compare the experimental 
time series to those generated by the model

• Repeat iteratively (adjusting in silico parameters as 
needed – ‘system identification’)



Basic ‘bottom-up’-driven Systems 
Biology pipeline at MCISB

HT protein
purification

Qualitative binding 
assays structural
model

Quantitative binding and
kinetic assays equations 
parametrised model

Omics measurements 
of system variables

Model refinementDatabase and 
bioinformatics

parameters

variables

Top-down
analyses



Bringing together metabolomics 
and systems biology models

Drug Discovery Today 11, 1085-1092 (2006)



Systems biology and modelling are 
all about representation



The main representation for systems 
biology models is SBML

www.sbml.org



METABOLIC 
MODEL IN SBML

CREATE 
MODEL

VISUALISE

STORE 
MODEL IN 

DB

RUN BASE MODEL

SENSITIVITY 
ANALYSES

SCAN 
PARAMETER 

SPACE

COMPARE WITH 
‘REAL’ DATA

DIFFERENT 
METABOLIC 

MODEL IN SBML

LITERATURE 
MINING ANNOTATE

STORE NEW 
MODEL IN DB

COMPARE 
MODELS

STORE 
DIFFERENCES AS 

NEW MODEL IN 
DBSYSTEMS BIOLOGY WORKFLOWS



Pipeline Pilot workflow

etc…



Scientists Decoupled 
suppliers & 
consumers

Collaboration

Knowledge 

Management

Science



‘Warehouse’ vs distributed workflows

• Different ‘modules’ developed in different labs can reside 
on different computers anywhere, and expose themselves as 
Web Services

• Labs can then specialise in what they are best at
• All that is then needed is an environment for enacting

bioinformatic workflows by coupling together these service-
oriented architectures

• One such is Taverna
• This is arguably the best way to combine metabolomic 

SBML models with metabolomic data, and is what we plan 
to do at MCISB



Overall Architecture

Experiment1 Experimentn
…

Repository1 Repositoryn
…

Model

Repository

Analysis1

Analysisn

Consistent Web 
Interfaces

Consistent Web Service Interfaces

Data 
Integration 

Using 
Workflows

Workflow

Repository



Taverna Workflow 
Environment

• Workflow 
environment for 
authoring scientific 
workflows.

• Developed by myGrid
e-Science Pilot 
project.

• Downloads: over 
1000 a month during 
2006.

http://taverna.sourceforge.net/



Taverna (sits on myGrid) 
www.mygrid.org.uk
www.taverna.sf.net



Taverna Workflow Workbench



Key issues and strategic benefits
• Easy to find workflows (Feta/Find-o-matic

semantic discovery engines)
• Easy to reuse and edit workflows
• Easy to share workflows (myExperiment)
• Talks directly to Utopia data analysis and 

visualisation engine
• Easy to configure for and extend to systems 

biology simply by wrapping the tools  and data 
sources as Web Services – preferably with 
proper semantic annotation in WSDL

• Usability for biologists vs bioinformaticians….



Now for some sensitivity analysis…

• The NFκB system



NFκB (1)
• NF-κB is a nuclear transcription factor that 

can modify the expression of many (200-
300…) other genes 

• It is held inactive in the cytoplasm of non-
stimulated cell by three IκB isoforms. 

• It is widely and diversely implicated in 
cancer, apoptosis and in diseases such as 
arthritis

Question 1: so what is a good drug target in the NFκB pathway?
Question 2: and how do we measure that?



The big question…
(aka the ‘crosstalk problem’)

How can the same thing (i.e. NF-κB) – it is 
assumed by changes in its concentration 
in the nucleus – be ‘involved’ both in cell 
proliferation in cancer and in apoptotic 
cell death (two processes that are pretty 
well opposite in character)?!



Summary of NF-κB – 3 steps
1. NF-κB is a nuclear 

transcription factor and is 
held inactive in the cytoplasm 
of non-stimulated cell by three 
IκB isoforms

2. During cell stimulation, the 
IKK complex is activated, 
leading to phosphorylation
and ubiquitination (and 
removal) of the IκB proteins. 

3. Free NF-κB translocates to the 
Nucleus, activating genes 
including IκBα. IκBβ& -ε are 
synthesised at a steady rate, 
allowing for complex temporal 
control of NF-κB activation 
involving negative feedback 

(1)

(2)

(3)



Many effectors (e.g. TNFα) can 
activate IKK



Hoffman et al (2002) produced a reduced 
model for cells lacking two IκB isoforms

(IκBβ and IκBε)



Hoffman et al used the modelling system 
Gepasi written by Pedro Mendes



We have reproduced this model (modified 
to remove mistakes in the original 

publication, now corrected) using Gepasi



The model has 64 unidirectional reactions & 26 variables

Violet red circles = IκB-NF-κB cytoplasmic reactions; Blue Arrows and circles = Nuclear Transport; Magenta Arrows 
and Pink circles = IκB mRNA synthesis (including transcription, translation and degradation); Black Arrows and white 
circles = IκB-NF-κB nuclear reactions; Light Green Arrows and circles = IκB Phosphorylation and Degradation 
reactions; Brown Arrows and brown circles = Bimolecular IKK- IκB and tri-molecular IKK- IκB-NF-κB; Yellow 
Arrows and circles = IKK slow adaptation coefficient



Cartoon of nuclear NF-κB after 
IKK addition
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After pre-equilibration for 2000s, 
IKK is ‘added’ at 0.1 μM

IKK
NFkBn



“Real” oscillations of GFP-NFκBn
observed microscopically (and averaged)



“Real” oscillations of GFP-NFκBn
observed microscopically with labelled 

IκBα and NFκB

Nelson et al, 
Science 2004

NB we measure individual cells, not ensembles



The timing and amount of oscillations depend 
strongly on the type of stimulation (various amounts 

and times of TNFα, different individual cells)

Nelson et al 
Science 2004



What about the model? Sensitivity analysis

• A generalised form of the control 
coefficients of MCA

• Dimensionless
• Describe quantitatively which reactions 

are most ‘important’
• In favourable cases (especially steady 

states) there are summation theorems
• We here discuss local sensitivity analyses

S
M

M
P

P
P
M =

δ

δ



Sensitivity coefficients of T3 for δP of 10% or 100%

• Only 8 reactions have significant sensitivity coefficients when
T3 is measured

• Note the change in sign for reaction 29 – very nonlinear system



9 important reactions
9: IKKIκBα-NF-κB catalytic rate constant

28: IκBα (IκBα-t) Inducible mRNA synthesis rate constant
29: IκBα (IκBα-t) mRNA degradation rate constant

34 : IKKIκBα association rate constant
36: Constitutive IκBα translation rate constant

38: IκBαn nuclear Import Rate constant
52: IKKIκBα-NF-κB association rate constant

61: IKK signal onset slow adaptation coefficient
62: IKKIκBα catalysis rate constant

What do they have in common?



They all involve free IKK and/or 
IκBα

9: IKKIκBα-NF-κB catalytic rate constant
28: IκBα (IκBα-t) Inducible mRNA synthesis rate constant

29: IκBα (IκBα-t) mRNA degradation rate constant
34 : IKKIκBα association rate constant

36: Constitutive IκBα translation rate constant
38: IκBαn nuclear Import Rate constant

52: IKKIκBα-NF-κB association rate constant
61: IKK signal onset slow adaptation coefficient

62: IKKIκBα catalysis rate constant



A phase plane plot shows the intimate 
connection between IKK, IκBα and NFκBn



Effect of varying k28



Prediction: increasing k28 will increase the 
period of the oscillations (e.g. T2 and T3)



Experiment (left) matches 
simulation (right)





IEEE Systems Biol 152, 153-160 (2005)



Synergistic effects in the NF-κB pathway – even 
qualitative differences when the effect of 1 rate 

constant is observed at different values of another!
Increasing k52

9 high

T1 ↓

9 low

T1 ↑



Mol Biosyst 2, 640-649 (2006)



Similar behaviour is found for nuclear NF-
κB using dynamic sensitivity analysis…



This was true when all variables were 
included, since NF-κBn is dominant



Many of these were the most 
identifiable parameters



• Using sensitivity information assists 
greatly in parameter fitting



Proximate parameter tuning



ITSA – Information Theoretic Sensitivity Analysis

• Treats a system as a communication channel
• Decomposes mutual information between inputs and 

outputs into main and interaction terms, in a principled 
way

• Unlike variance based schemes this approach can 
accommodate correlated inputs



We usually consider biological circuit 
elements such as enzymes as ‘responding’

solely to amplitudes

e.g. irreversible Michaelis-Menten:

v = (Vmax.S)/ ( S + Km)

Thus, v depends ONLY on the 
‘instantaneous’ concentration of S



Frequency encoding 

• Having the effective signal frequency-encoded allows the same 
‘medium’ (NF-kB) to carry different ‘messages’ using changes in the 
frequency or dynamics rather than the amplitude of oscillatory signals 
per se

• There is thus no ‘crosstalk’ (and no crosstalk problem)
• But this also means that great care must be used if such systems are to be 

exploited for providing novel drug targets simply by inhibiting particular 
steps, as the downstream events are not easily related to the activities of 
the individual steps

• (Additional means of avoiding crosstalk are likely also present, e.g. extra 
transcription factors providing a logical AND.)

• More generally, we need to recognise signalling systems as signal 
processing systems



Network motifs such as the coherent feedforward
loop respond to frequency, not amplitude per se



The same signal can lead to two different 
outputs depending on the filtering/detector

Low-pass 
filter

High-pass

filter

One signal

Output 1, e.g. 
apoptosis

Output 2, e.g. 
proliferation

“But one thing is certain: to understand the 
whole you must study the whole”



MIB
HOME OF THE MANCHESTER CENTRE 
FOR INTEGRATIVE SYSTEMS BIOLOGY

Faculty, postdoc and studentship positions available



Conclusions
• SBML allows rich and principled representations of 

biochemical networks, including much useful metadata
• Taverna allows us to construct Systems Biology workflows, 

including those performing sensitivity analyses
• Sensitivity analyses (local, global, static, dynamic) proved 

extremely important in understanding the highly nonlinear 
NFκB system, and thereby uncovered some new biological 
principles

• Further and better algorithms will allow unique insights 
into the parameterisation, control and identification of 
biochemical systems
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