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“Progress In science depends on new
techniques, new discoveries, and
, probably In that order”

Sydney Brenner, Nature, June 5, 1980

“But one thing Is certain: to understand
the whole you must study the whole”

Henrik Kacser, 1986
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« SBML, Taverna and modelling in modern systems
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o Sensitivity analyses of the NF-kB signal
transduction pathway
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Here 1s the evidence, now

what 1s the hypothesis?

The complementary roles of
inductive and hypothesis-driven
science In the post-genomic era

Douglas B. Kell'* and Stephen G. Oliver?®

BicEssays 26:99-105, © 2003 Wilkey Perodicals, Inc. BioEssays 26.1 90
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Molecular = Systems Biology

Traditional molecular biology

The new systems biology

Study molecules in isolation

Study systems as a whole

Qualitative

Quantitative

Reductionist

Holistic/synthetic

Largely hypothetico-deductive

Largely inductive

Little need for computation

Computation and modelling at the core

The importance of technology
development is barely recognised

The importance of technology
development is explicit
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SYSTEMS BIOLOGY
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Modelling: ODEs, Sensitivity analyses, Constraint-based optimisation,
Solving inverse problems, novel strategies




N
‘Bottom-up’ Systems Biology pipeline (dry)

1.

Qualitative (‘structural’) model — who talks to
whom as substrate, product or effector ->

Quantitative model including ‘real’ or

approximate equations describing individual steps
9

Parametrisation of those equations =

Run the model and assess 1ts most important
parameters

Iteratively , with wet data, GOTO 1....




-
Systems biology experiments
(including the wet side) ....

e Set up a well-defined system

o Effect systematic perturbations (genetic,
environmental, chemical)

* Measure a time series of as many concentrations of
variables, especially RNAs, proteins, metabolites (the
’omes) as possible

* Model the system and compare the experimental
time series to those generated by the model

 Repeat iteratively (adjusting in silico parameters as
needed — ‘system identification’)



Basic ‘bottom-up’-driven Systems
Biology pipeline at MCISB

HT.p.rote_in ] Qualitative binding N Q_uan_tltatlve binding apd
purification assays > structural kinetic assays = equations 2>
model parametrised model
/ | parameters |
Top-down :
Database and analyses | Model refinement |

bioinformatics
| variables |
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Bringing together metabolomics
and systems biology models

Douglas B. Kell'*

'Schod of Chemistry, Faraday Building, The University of Manchester. PO Box B8, Manchester, Ma0 100, UK

*The Manchester Centre for Integrative Systems Biology, The Mandhester Interdisciplinary Biocentra, 131, Princess 5t Manchester, M1 70N, UK

Drug Discovery Today 11, 1085-1092 (2006)




Systems biology and modelling are
all about representation




The main representation for systems
biology models iIs SBML

Viol. 19 no. 4 2003, pages 524-531
DO1: 101085/ bioinformatics/big015

The systems biology markup language (SBML): a
medium for representation and exchange of
biochemical network models
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‘“Warehouse’ vs distributed workflows

o Different ‘modules’ developed in different labs can reside
on different computers anywhere, and expose themselves as
Web Services

» Labs can then specialise in what they are best at

e All that 1s then needed Is an environment for enacting
bioinformatic workflows by coupling together these service-
oriented architectures

e Onesuchis Taverna

e This is arguably the best way to combine metabolomic
SBML models with metabolomic data, and is what we plan
to do at MCISB




Overall Architecture

e
S

Workflow
Repository

Data

Integration

~N

/T\
~

Model

Using e

Workflows

Repository
~

Consistent Web Service Interfaces

\
e Repository,

I >

Repository,

[ Experiment;, } S [ Experiment, } .

Consistent Web
Interfaces




Taverna Workflow
Environment

+ Workflow
environment for

authoring scientific

workflows.

* Developed by ™Grid
e-Science Pilot
project.

e Downloads: over http://taverna.sourceforge.net/
1000 a month during
2000.

1 from LIRL




Taverna (sits on ™Grid)

www.mygrid.org.uk
www.taverna.sf.net

Vol 20no. 17 2004, pages 3045-3054
dioi: 10,7093/ bioinformatics/bth367

Taverna: a tool for the composition and
enactment of bioinformatics workflows

Tom Oinn', Matthew Addis?, Justin Ferris2, Darren Marvin?,
Martin Senger’, Mark Greenwood®, Tim Carver?, Kevin Glover®,

Matthew R. Pocock®, Anil Wipat® and Peter Li®-*
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Key iIssues and strategic benefits

Easy to find workflows (Feta/Find-o-matic
semantic discovery engines)

Easy to reuse and edit workflows
Easy to share workflows ("YExperiment)

Talks directly to Utopia data analysis and
visualisation engine

Easy to configure for and extend to systems
biology simply by wrapping the tools and data
sources as Web Services — preferably with
proper semantic annotation in WSDL

Usability for biologists vs bioinformaticians....



Now for some sensitivity analysis...

 The NFkB system




N
NF«B (1)

 NF-xB Is a nuclear transcription factor that
can modify the expression of many (200-
300...) other genes

 Itis held inactive In the cytoplasm of non-
stimulated cell by three I1xB isoforms.

 Itiswidely and diversely implicated In
cancer, apoptosis and in diseases such as
arthritis

Question 1: so what Is a good drug target in the NFkB pathway*
Question 2: and how do we measure that?



The big question...
(aka the “crosstalk problem?)

How can the same thing (i.e. NF-xB) — It Is
assumed by changes In Its concentration
In the nucleus — be ‘involved’ both in cell
proliferation in cancer and in apoptotic
cell death (two processes that are pretty
well opposite in character)?!




.
Summary of NF-kB — 3 steps

1. NF-«B is a nuclear _
transcription factor and is
held inactive in the cytoplasm

of non-stimulated cell by three Input
lxB isoforms O

2. During cell stimulation, the KK D (2)
IKK complex is activated, o
leading to phosphorylation 1) £ s
and ubiquitination (and <

removal) of the IkB proteins.

3. Free NF-xB translocates to the
Nucleus, activating genes
Including IkBa.. IkBB& -¢ are
synthesised at a steady rate,
allowing for complex temporal
control of NF-xB activation
Involving negative feedback




Many effectors (e.g. TNFa) can
activate IKK

Gell membrane —————

Ubiquitination




Hoffman et al (2002) produced a reduced
model for cells lacking two kB 1soforms
(IkBp and IkBg)

The IkB-NF-«kB Signaling
Module: Temporal Control and
Selective Gene Activation

Alexander Hoffmann,'* Andre Levchenko,?* Martin L. Scott,?+
David Baltimore™!

Muclear localization of the transcriptional activator NF-kB (nuclear factor «B)
is controlled in mammalian cells by three isoforms of MF-kB inhibitor protein:
lkBex, -B, and -£. Based on HIITI|.!|.IT" ing reductions of the lkB-NF-xB signaling
module in kn I llnp we |:1r ___nT a e :rT1|::||‘t:|‘l'| 1r|:|| m 1::|-t| 'rhj‘r de
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SCIENCE VOL 298 8 NOVEMBER 2002
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Hoffman et al used the modelling system
Gepasi written by Pedro Mendes

Vial. T4 no. 10 1595
Fages 865-883

Non-linear optimization of biochemical pathways:
applications to metabolic engineering and
parameter estimation

Pearo Menades and Douglas B. Kell

Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth,
Ceredigion S¥23 3DD, UK

Feceead on Juky 27, 1998 revised on August 31, 1998, accepted on Septamber 4, 1995

APPLICATIONS NOTE "o 2a0

MEG (Model Extender for Gepasi): a program for
the modelling of complex, heterogeneous,
cellular systems

Pedro Mendes "* and Douglas B. Kell'

tinstitute of Biological Sciences, University of Wales, Aberystwyth SY23 30D, UK

Received on July & 2000, revised on September 19, 2000; accepted on October 6, 2000




We have reproduced this model (modified
to remove mistakes in the original
publication, now corrected) using Gepasi

(&} IkB_NF-kB-base-after2000mins.gps - Gepas
File ©ptions Help

I Scan I Time co

Kinetic Types

For Help, press F1 ML




The model has 64 unidirectional reactions & 26 variables

*kan-NF-kEr{ lkEen-NF-kBrJ

Violet red circles = IkB-NF-xB cytoplasmic reactions; Blue Arrows and circles = Nuclear Transport; Magenta Arrows
and Pink circles = IkB mRNA synthesis (including transcription, translation and degradation); Black Arrows and white
circles = IkB-NF-kB nuclear reactions; Light Green Arrows and circles = lkB Phosphorylation and Degradation
reactions; Brown Arrows and brown circles = Bimolecular IKK- lkB and tri-molecular IKK- IkB-NF-kB; Yellow

Arrows and circles = IKK slow adaptation coefficient




Cartoon of nuclear NF-kB after
| KK addition
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After pre-equilibration for 2000s,
IKK Is ‘added’ at 0.1 uM
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“Real” oscillations of GFP-NFxBn
observed microscopically (and averaged)

R ch Article

Multi-parameter analysis of the kinetics of NF-«xB
signalling and transcription in single living cells

Glyn Nelson', Luminita Paracan?, David G. Spiller!, Geraint J. C. Wildel, Mark A. Browne?, Peter K. Djali'-3,

Elaine Sullivan?, Eike Floettmann2 and Michael R. H. White!*
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“Real’ oscillations of GFP-NFxBnNn
observed microscopically with labelled
and

Nelson et al, NB we measure individual cells, not ensembles
Science 2004




The timing and amount of oscillations depend
strongly on the type of stimulation (various amounts
and times of TNFa, different individual cells)

Nelson et al
Science 2004



What about the model? Sensitivity analysis

* A generalised form of the control
coefficients of MCA

* In favourable cases (especially steady
states) there are summation theorems

e \WWe here discuss local sensitivity analyses



Sensitivity coefficients of T3 for 6P of 10% or 100%

* Only 8 reactions have significant sensitivity coefficients when
T3 Is measured

* Note the change in sign for reaction 29 — very nonlinear system




9 Important reactions

9: IKKIxBao-NF-kB catalytic rate constant
28: IkBa (IkBa-t) Inducible mRNA synthesis rate constant
29: IkBa (IkBa-t) MRNA degradation rate constant
34 : IKKIkBao association rate constant
36: Constitutive IkBa translation rate constant
38: lkBan nuclear Import Rate constant
52: IKKIkBa-NF-kB association rate constant
61: IKK signal onset slow adaptation coefficient
62: IKKIkxBa catalysis rate constant

What do they have in common?



They all involve free IKK and/or

lkBo.

9: IKKIxBa-NF-kB catalytic rate constant
—p 28 IkBa (IkBa-t) Inducible mRNA synthesis rate constant
29: IkBa (IkBa-t) MRNA degradation rate constant

34 : IKKIkBo association rate constant
36: Constitutive IkBa translation rate constant

38: lkBan nuclear Import Rate constant
52: IKKIkBa-NF-kB association rate constant

61: IKK signal onset slow adaptation coefficient
62: IKKIkBa catalysis rate constant



A phase plane plot shows the intimate
connection between IKK, IkBa and NFkBn

NF-<Bn /uM 0 "2 kBa fuM
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Prediction: increasing k28 will increase the
period of the oscillations (e.qg. T2 and T3)
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Experiment (left) matches
simulation (right)
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MF-kE signalling pathway

[IKK]t




|IEEE Systems Biol 152, 153-160 (2005)

Synergistic control of oscillations in the NF-«B
signalling pathway

A.E.C. Ihekwaba, D.S. Broomhead, R. Grimley, N. Benson, M.R.H. White and D.B. Kell




Synerqistic effects in the NF-xB pathway — even
gualitative differences when the effect of 1 rate
constant 1s observed at different values of another!

Increasing; k52..

9 low

Rate constant 52




Mol Biosyst 2, 640-649 (2006)

PAPER www.rsc.org/molecularbiosystems | Molecular BioSystems

Insights into the behaviour of systems biology models from dynamic
sensitivity and identifiability analysis: a case study of an NF-kB signalling

pathway

Hong Yue,**” Martin Brown,’ Joshua Knowles,”” Hong Wang,® David S. Broomhead”? and Douglas B. Kell*?




Similar behaviour iIs found for nuclear NF-
kB using dynamic sensitivity analysis...
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This was true when all variables were
Included, since NF-xB_ Is dominant
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Many of these were the most
Identifiable parameters
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Improving Data Fitting of an Signal Transduction Model By Global
Sensitivity Analysis

Yisu Jin, Hong Yue, Senior Member, IEEE, Yizeng Liang, and Douglas B. Kell

o Using sensitivity information assists
greatly in parameter fitting

0.1
— m— cirnulation course
:_i_ 0.0 @  experimental data []
= o008
> :i‘ 0.07
|
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~ © 0
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Fig. 1. Comparison of the fitting methods applied to the oscillatory NF-xB \ s

0 50 0 180 200 20 300 B0 40
Time (min)
Fig. 3. The fitting result of NF-kB; in the IxBau-IKK-NF-kB model. The

experimental data are shown as black filled circles: the best solution of fitting
course is shown in red.

activation profile in IxBp-/- IxBe-/- cells. The experimental data are shown as
black filled circles; the “semi-quantitative™ fit 1s shown in red and the result
of random search fitting in blue (See Fig. S1 in the supplementary material to

[14]).




Proximate parameter tuning

[Proximate Parameter Tuning for
biochemical networks with

uncertain Kinetic parameters

: Stephen J. Wilkinson®®, Neil R. Benson® &
Douglas B. Kell*2®

aSchool of Chemistry and *The Manchester Centre
for Integrative Systems Biology, Manchester

1w Interdisciplinary Biocentre, The University of
Manchester, Princess St, Manchester, M1 7DN,
UK

Pfizer Central Research, Ramsgate Road,
1= Sandwich, Kent, CT13 9NJ, UK




ITSA — Information Theoretic Sensitivity Analysis

Information-theoretic Sensitivity Analysis:

ISchool of Chemistry, 2The Manchester Interdisciplinary Biocentre, Faculty of Life Sciences,
4School of Electrical and Electronic Engineering, ISchool of Mathematics and $School of
Computer Science, The University of Manchester, 131 Princess St, Manchester M1 7DN, UK

 Treats a system as a communication channel

 Decomposes mutual information between inputs and
outputs into main and Interaction terms, in a principled
way

« Unlike variance based schemes this approach can
accommodate correlated inputs



We usually consider biological circuit
elements such as enzymes as ‘responding’
solely to amplitudes

e.g. irreversible Michaelis-Menten:
V= (Ve S) (S + K,

Thus, v depends ONLY on the
‘Instantaneous’ concentration of S



Frequency encoding

e Having the effective signal frequency-encoded allows the same
‘medium’ (NF-kB) to carry different ‘messages’ using changes in the
frequency or dynamics rather than the amplitude of oscillatory signals
per se

» There is thus no ‘crosstalk’ (and no crosstalk problem)

e But this also means that great care must be used if such systems are to be
exploited for providing novel drug targets simply by inhibiting particular
steps, as the downstream events are not easily related to the activities of
the individual steps

 (Additional means of avoiding crosstalk are likely also present, e.g. extra
transcription factors providing a logical AND.)

 More generally, we need to recognise signalling systems as signal
processing systems




Network motifs such as the coherent feedforward
loop respond to frequency, not amplitude per se

Network motifs in the transcriptional regulation
network of Escherichia coli

Shai S. Shen-Orr!, Ron Mile?, Shmoolik Mangan® & Uri Alon’?




The same signal can lead to two different

outputs depending on the filtering/detector

AV

“But one thing Is certain: to understand the
whole you must study the whole”
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Conclusions

« SBML allows rich and principled representations of
biochemical networks, including much useful metadata

e Taverna allows us to construct Systems Biology workflows,
Including those performing sensitivity analyses

o Sensitivity analyses (local, global, static, dynamic) proved
extremely important in understanding the highly nonlinear
NF«xB system, and thereby uncovered some new biological
principles

o Further and better algorithms will allow unique insights

Into the parameterisation, control and identification of
biochemical systems
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