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1. Introduction

� The proposition: the use of the Partial Least Squares Regression (PLSR)
(Wold et al., 1983, applications in chemometrics, biometrics, etc) in order
to carry out the (Global) Sensitivity Analysis in case of highly correlated
inputs and moderate nonlinear behaviour.

�! Classical de�nition of a Sensitivity Index:
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� Advantages of the PLSR that lead to new SIj

� the partial covariances between inputs and output are taken into
account,

� the number of simulations can be less than the number of inputs.



2. PLS regression background

2.1 The formal PLS model

Let us consider the multivariate regression model: Y = f (X)

Y f�! X

N �M N � P

where X is a N � P matrix composed of P controlled inputs Xj �xed at N
levels and Y is a N �M matrix composed of the M outputs Yk observed at
these N levels; f is a set of M polynomial functions of xj to be estimated via
H crossvalidated latent components th.



2.2 Algorithm of PLS1 (M = 1) regression

Step 1

Step1.1

t1
(N�1)

= E0w1 = Arg
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[cov (t; y0)]

)

where E0 and y0 be the centered and scaled X and y, respectively.

=)As cov (t1; y0) =
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to maximize simultaneously the explained variance by the latent component t1
and the correlation between the ouptut y and t1:

=) it is a compromise between the ordinary multiple regression of y on
X1; : : : ; XP and the principal component analysis of the X matrix

,! Solution :

By the Lagrange multipliers method we �nd that w1 is the eigen vector of the
(P � P ) matrix ET0 y0yT0 E0 (associated with the largest eigen value):
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Step1.2

Regressions of the E0j and y0 on t1 :

E0j = p1jt1 + E1j
y0 = r1t1 + y1

with p1j = ET0jt1= kt1k
2 and r1 the scalar regression coe¢ cients,

and E1 = (E11; : : : ; E1P )
T , y1 the "residual" matrice and vector.

=)

E0 = t1p
T
1 + E1

y0 = r1t1 + y1

where p1 = (p11; : : : ; p1P )
T :



Step 2

Step2.1
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that leads to the second PLS component:
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Step2.2

We achieve the new regressions that lead to the decompositions:

E1 = t2p
T
2 + E2

y1 = r2t2 + y2

where p2 and r2 are the corresponding regression coe¢ cients (vector and
scalar).

� Etc. for the following steps



,! Final results (at step H with H crossvalidated orthogonal th)
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,!The following normalized PLS coe¢ cients �̂
PLS
j can be seen as new

(signed) SIj:

SIj = 100�
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PLS
jPP
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This proposition is motivated by the result:
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3. Outlines of the new SA approach

� STEP 1: N Monte Carlo simulations of the output y are generated (the
"optimal" aspect of the simulation design is not considered here) via a
"computer model" based on the distributions of P independent or corre-
lated inputs Xj.

� STEP 2: A full quadratic polynomial model is built from the P inputs Xj
and then y, and the K inputs and expanded inputs are centered-scaled.

� STEP 3: A stepwise PLSR (BQ method, Gauchi & Chagnon, 2001)
) selecting the K� signi�cant inputs and signi�cant expanded inputs by
observing the evolution of a PLS speci�cal statistics named the Q2cum.



� STEP 4: A �nal PLSR model is estimated with the K� inputs.

If 100 � R2 � 80%, we consider that this �nal model is acceptable and
the K� new SIj are computed.

If 100 � R2 is too low, we declare that the approach does not work (we
advice not to raise the degree of the polynomial in order to keep a "physi-
cal" interpretation of the inputs associated to the SIs) and we propose a
PLS extended approach (see conclusion).



4. An application in risk assessment in food
Exposure to the mycotoxin Ochratoxin-A (OTA) in food

(French children population)

� An elementary theoretical exposure to OTA is de�ned by the product
of a i food consumption (normalised by the individual weight) by the
contamination level of this food: Ei = CiTi:

� A global theoretical exposure is the sum of several (eight foods were
studied here) elementary exposures: EG =

P8
i=1CiTi.

� An estimation of the ~EG random variable distribution was obtained, as
well as its 95th quantile for evaluating the risk assessment exposure to
OTA in food (Gauchi & Leblanc, 2002), and a previous SA approach was
reported (Albert & Gauchi, 2002)



Figure 1: Exposure output relative histogram for children
(unit=ng�bwkg�1�day�1)



� We propose here a second SA where the whole variation domain of the 32
inputs can be taken into account, to the contrary of the previous study:

=)The 32 = 8 � (2 + 2) correlated inputs are the estimated scale
(L) and shape (R) parameters of the Gamma distributions �tted to
the consumption and contamination histograms of the eight foods
(Indeed, the inputs depend on the collected data during the survey, and
their potential ranges were estimated from real consumption and contam-
ination data).

=)The output we are interested in is the 95th quantile of the ~EG
distribution for quantifying its sensitivity to the variation of the K (=
560) inputs and expanded inputs.

Two trials were achieved withN = 318 (note thatN < K), andN = 12; 698:
the signi�cant selected inputs are the same (except CETCR2) for these values
of N .



Figure 2: The Stepwise PLS regression (BQ method): Evolution of the Q2cum
versus the eliminated inputs.
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Figure 3: The K� = 6 new signi�cant
SIs (for N = 12; 698); The �nal PLS

model has a 100�R2 = 95%:



Comments:

� Only six SIs are signi�cant (in the sense of stepwise PLSR-BQ and also
in a bootstrap sense) among the 560 SIs.

� The type of food �CEREALS�is the only type of food that is involved in the
SA and, moreover, the SIs relative to the parameters of its contamination
distribution are preponderant.

=) Thus, it is of particular importance to have accurate values for these
parameters and, consequently, we need to improve the collecting process
of contamination data for �CEREALS�.



5. Conclusion

� PLSR (no matrix inversion) can contribute to improve the SA, especially
when the inputs are highly correlated and/or the number of simula-
tions is less than the number of inputs.

� Another important possibility (technical report and paper in progress) is:

Taking into account qualitative inputs via the 0/1 coding of their
levels and mixture of quantitative and qualitative inputs.

� Finally, I wish that this approach be compared to other SA methods.

� Future work: kernel (RBF) PLSR for strong nonlinear behaviour.


