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The simplest Transfer Function (TF) model is a linear regression in which the dependent output variable is computed as an additive sum of several ‘input’ variables. The statistical identification and estimation of such models is straightforward and can be accomplished by ordinary multiple regression analysis. However, transfer functions are normally used for the modelling of linear, constant parameter, discrete or continuous-time dynamic systems. Such models, which are simply an alternative form of the equivalent ordinary difference and differential equations, can be obtained from measured input-output data using statistical methods of identification and estimation for TF models, such as those available in the CAPTAIN Toolbox
 for MatlabTM. Furthermore, TF models can be generalized in two major ways to include Time Variable Parameter (TVP) and State Dependent Parameter (SDP) transfer function relationships. The TVP model represents non-stationary systems, where the parameters can vary over time in an unknown, stochastic manner (see e.g. [1]); while the parameters in the SDP model are dependent on other time variable states and so can represent a wide class of  nonlinear, stochastic  systems (see e.g. [2]). Once again, identification and estimation of such models can be accomplished with the help of algorithms in the CAPTAIN Toolbox.

The present paper will show how this generalized class of TF model can also be utilized to improve the computational and statistical efficiency of sensitivity analysis and facilitate the ‘emulation’ [3] of large system models. It will first outline the nature of SDP models for stochastic static and dynamic systems and introduce methods for the non-parametric identification and parametric estimation of such models. It will then show how such an approach can be used to efficiently process the Monte Carlo Simulation (MCS) results obtained from sensitivity analysis. The paper will also show how generalized TF modelling can be used in Dominant Mode Analysis (DMA), a useful form of model reduction [4], and it will demonstrate how this can provide a basis for the synthesis of computationally efficient emulation versions of large simulation models. These various methodological procedures will be illustrated by two main examples. The first example will show how SDP estimation is able to identify and estimate an SDP model for a simulated Lorenz Strange Attractor system based on noisy measurements of its three state variables. The second example will show how the generalized TF modelling can be used to obtain an emulation version of a large macro-economic simulation model.

SDP estimation is a special form of time variable parameter estimation for models formulated as a regression relation, in which the dependent variable is normally the output 
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 of a system which is computed as an additive sum of  the ‘input’ variables 
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Here 
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 are state dependent parameters that vary over time because they are a function of the associated (normally measured) variable 
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 is assumed to be a zero mean, serially uncorrelated and normally distributed random noise sequence (white noise) with variance 
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. As shown in [5,6] Equation (1) forms the basis for the use of SDP estimation in sensitivity analysis. Here, the mathematical or computational model usually takes the static form:
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where the model parameters (input factors) 
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 have a domain of variability 
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, linked to the uncertainty about their precise value. The SDP equation (1) is used to approximate (1), with the input variables representing the input factors and the product of the SDPs and their associated input variables providing estimates of the first order sensitivity functions. The advantage of using the SDP model in this manner is that the number of MCS realizations required to estimate the sensitivity functions is considerable reduced in relation to conventional methods. This static’ concept of meta-modelling to sensitivity analysis is also the basis of the Gaussian emulator [2] and of the Random Sample – High Dimensional Model Representation based on polynomial regression [6].
In the case of dynamic systems, the ‘input variables’ to the system will normally contain past sampled values of the dependent variable, as well as present and past sampled values of input variables that affect the output variable. In this form, the model is a nonlinear SDP version of the well known linear AutoRegressive eXogenous variable (ARX) model. This SDARX model is used in the initial non-parametric identification stage of SDP modelling. In the single input, single output case, the more general SDP Transfer Function (SDTF) model takes the form:
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where 
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 is the backward shift operator, i.e. 
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 is introduced as a delay on the input variable in order to allow for any pure time delay in the system. Equation (3) can be extended straightforwardly to include multiple input variables and, as such, provides the basis for final parametric estimation of the SDP model and for the dominant mode analysis used in the full dynamical meta-modelling approach discussed here and exemplified in the second example. In the dynamical case, the computational model under analysis takes the modified form:
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The typical approach for meta-modelling and sensitivity analysis in the case of dynamical models is to repeat a series of static analyses on a set of grid points along the time co-ordinate. Our meta-modelling procedure, on the other hand, first identifies, based on DMA, a SDTF model that best approximates the features of the original complex dynamical model for a ‘nominal’ set of parameters values 
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. Second, a MC set of realizations of the model (4) is generated sampling 
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 from their domain U, and a corresponding MC set of SDTF approximations is estimated. Third, the relationship between the 
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 parameters of the original model and the coefficients [
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] of the SDTF approximation is mapped by applying the usual ‘static’ form techniques [2,5-7], e.g. estimating HDMR component functions of the links 
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The second step of our procedure also includes validation checks, whereby the structure of the SDTF model identified on the ‘nominal’ set of parameters of (4), is checked to hold also for all the MC realizations. Such a validation step might include an iterative DMA and identification procedure in order to select the SDTF structure that best fits the original model in the entire domain U (or at least in its largest part). In the case of stochastic models (i.e. 
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 are stochastic processes), validation also checks the effectiveness of the identified SDTF to fit random realisation of the stochastic dynamical system.
This three-step procedure defines a full dynamic meta-model, whereby for every parameter set of the original model a corresponding set of coefficients for the SDTF is derived, that produce a computationally efficient and operationally equivalent dynamic simulation model that can replace the original large simulation model. This approach has the advantage that it is not based on a series of static analyses on grid points: rather, the SDTF meta-model mimics the relevant dynamical features of the original model, allowing for a full dynamic approximation.
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