Monte Carlo analysis OF a generic cell cycle model
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The cell cycle is the sequence of events by which a growing cell replicates all of its components and divides them into two sister cells. The eukaryotic cell division cycle is driven by an underlying molecular network, which is centred around complexes of cyclin-dependent kinases (Cdk) and cyclins. In phase G1, the cell is growing in its cytoplasmic mass, which causes a slow but steady accumulation of Cdk/Cyclin activities. The DNA is duplicated in phase S, which is followed by the next growing phase G2. In the subsequent M phase (mitosis), the chromosomes are separated and the cell division takes place. 

Csikász-Nagy et al. [1] have created a generic cell cycle model that is able to simulate several types of living cells in such a way that for each cell type the differential-algebraic system of equations are identical, but the values of the parameters are different. This common system of differential-algebraic equations contains 14 variables and 86 parameters. In our studies, parameter sets related to budding yeast, fission yeast and mammal cells were investigated. Since measured concentration(time curves are not available for these cells, a parameter set was considered successful, if the corresponding model simulates a proliferating cell. Otherwise, the modelled cell was considered dead. The requirement for a living cell was to produce 4 cell divisions in 1000 minutes and at least one division in the last 280 minutes.

First, the parameters were changed one-at-a-time, while all the other parameters were kept constant at their nominal values. Increasing or decreasing a parameter by four orders of magnitude, the limits were explored where the cell is still alive. Some parameters could be changed by (4 orders of magnitude; these parameters are non-influential or control the time-profiles of concentrations that are not critical for the cell cycle. Other parameters could be decreased, but increasing them kills the cell, while opposite behaviour was found for another group parameters. Since increasing a parameter may have positive or negative effect on the flux of a pathway, these are typical patterns of parameter influence when the role of a decreased flux pathway can be taken over by another parallel path, but increasing the flux of this pathway causes damage. For the fourth group of parameters, their values could be changed in a narrow window only, indicating their critical role. The results of the classification according to the four groups above were similar for most parameters for each cell type. However, there were 13 parameters with different classification for different types of cells. 

To investigate parameter interaction, Monte Carlo analyses of the three cell type models were carried out. For each model, ten thousand parameter sets were generated using Latin hypercube sampling assuming log-uniform distribution, within the limits assigned by the single parameter changes. In the cases of fission yeast, mammal and budding yeast cells only 53, 44, and 69 parameter sets, respectively, were found that produced living cells out of the 10000. In order to explore if increasing a parameter value can be compensated by a systematic change of another parameter to keep the cell alive, correlation of these parameter values was investigated. The ten-based logarithms of the multiplication factors of the nominal parameter values were arranged to a matrix in such a way, that each row corresponded to a living cell and each column to a parameter. Then, the correlations of the column vectors were calculated. The Figure shows a typical example for such correlations for fission yeast cells. The correlation coefficient for parameters kd20 and ki20 is –0.48. Both parameters control the concentration of enzyme Cdc20. If the values of these parameters are simultaneously low, it causes an early rise of the concentration of Cdc20, therefore the cell cycle gets stuck in phase G1. For the definition of parameter names please refer to reference [1].

Correlations with absolute values higher than 0.4 were investigated in details. For the fission yeast model, high correlation was found also for parameters Jah1 and kah1p (correlation coefficient –0.44), both are controlling the concentration of Cdh1. Other highly correlated parameters are Jawee and kdapp (–0.43, both are controlling the length of phase M); parameters Jatf and ksapp (+0.42, both are controlling the concentration of active cyclin A); parameters ka25 and ksbp (–0.42, both are controlling the concentration of active MPF); parameters ksbpp and SK (–0.46, controlling the length of phases G1 and G2). 

In the case of the mammal cell model, high correlation was found for parameters ksepp and katfppp (+0,51), which are indirectly and directly, respectively, control the production of transcription factor TFE; parameters kdepp and katfppp (–0.43), which control the production of cyclin E; parameters J20 and kitfpp (+0.43), which both indirectly control the level of cyclin A; parameters kah1pp and SK (–0.53), which affect the activity of Cdh1. Increasing the values of both parameters kdipp and SK (–0.47) increase the decay of CKI. If the values of both parameters are low, the high CKI concentration results in a halt in phase G1. No high correlation was found between the parameters of the budding yeast model. 
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Figure: Values of parameters kd20 and ki20 that simulate proliferating fission yeast cells when all other parameters are also changed simultaneously. The axes are the logarithms of the multiplication factors of the original parameter values.

Conclusion: The division cycles of budding yeast, fission yeast, and mammal cells are frequently investigated experimentally and are subjects of vigorous modelling activity. Recently a unified model was published [1] that can simulate the cycles of the above three types of cells using the same system of algebraic-differential equations and different parameter sets. This generic cell cycle model was investigated by systematic changes of parameters. The aim was to find altered parameter sets that also describe living and proliferating cells. Monte Carlo analysis with Latin hypercube sampling was used, and the correlating parameters were identified. For these parameters, either some combinations are not valid or the effect of increasing of one parameter can be compensated by increasing or decreasing another parameter. The identified positive and negative parameter correlations were elucidated knowing the details of the regulating cycles. An unexpected result of this study is that in spite of the common structure of the three models, very different correlations were found for the three types of cells.
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