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For many areas of interest, models of complex systems can be taken to have the form of a deterministic mapping from a set of n inputs to one or more output(s) (Figure 1). The outputs can be considered separately, so that for each output Yk there is a map
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Usually, the input-output mapping is not available in explicit form but can be evaluated numerically for any given inputs. 

  Global sensitivity analysis aims to rank the inputs X1,…,Xn according to the degree to which they influence the output, individually and conjointly. Here ‘inputs’ may also refer to intrinsic model parameters whose influence on the output is to be determined, as in Fig 1B. This type of global sensitivity analysis is commonly performed in a probabilistic manner by evaluating the model for multiple sets of randomly and independently selected input values drawn, for instance, from uniform distributions over suitable intervals. The output, being a function of the randomised inputs, thus also becomes a random variable. If the inputs are sampled independently, the variance of the output distribution can be decomposed into contributions by individual inputs, pairs, triplets, and so forth. This procedure is well known in statistics as ‘analysis of variance’ (ANOVA) (e.g. [1]), and several authors have contributed to improving its computational efficiency for sensitivity analysis (e.g. [2] and [3]). 
Rather than analysing the variance of the output distribution, we take a different route, measuring output uncertainty in terms of Shannon’s entropy [4]. Our starting point is the concept of the ‘communication channel’ [5], which enables us to view the model as a transmitter of information between inputs and outputs (Fig 1B). 

A                              B

      [image: image1.jpg]


   
[image: image2.emf] 

Complex  

System  

input  

(parameters)  

Output   

Y 1  

Complex  

System  

Input  

(parameters)  

X  

1   1  

X  

2  

X  

2  

X  

3  

X  

3  

X  

n  

X  

n  

.  

.  

.  

Y 2  

Y m  

.  

.  

.  

Y 3  


Figure 1. A complex system with multiple inputs and outputs. This is a typical situation in systems biology. For instance, pathway models (A) are described by sets of coupled non-linear ordinary differential equations (deterministic or stochastic). Input-output relations can only be elucidated by numerical evaluation of the system output, e.g. a flux, for various configurations of the input parameters. Global sensitivity analysis aims to determine the degree to which these inputs control the output, and how they interact. In most applications, the input-output mapping is non-linear and not given in closed form; hence the system is a ‘black box’ (B).
The mutual information of two variables is a quantity that measures their mutual dependence [5]. Determining the mutual information I(Xi;Y) between random sampling sequences of individual inputs Xi and their output counterpart can elucidate first order input-output relations. Mutual information provides a general measure of association that is applicable regardless of the shape of the underlying distributions and – unlike linear or rank order correlation – insensitive to non-monotonic dependence among the random variables. Further insight can be obtained by unravelling conditional dependencies among the system inputs. We here define novel and general sensitivity measures of second and higher order by evaluating input correlations induced by conditioning on the output. To our knowledge, only a first-order information-based analysis has been discussed in the literature to date [6; 7, pp. 402 – 407].

As does variance, the output entropy H(Y) quantifies the variability of a distribution, but differs from it in that, while variance essentially assumes Gaussian distributions, the entropy is more general. We therefore further develop an information-theoretic framework for the sensitivity measures thus derived, based on the observation that their sum is bounded from above by the output entropy H(Y). From this viewpoint, the (information-theoretic) sensitivity indices quantify the amount of output uncertainty removed by the knowledge of individual inputs and combinations thereof.


Sensitivity analysis of this kind is also an analysis of the total mutual information I(X1,…,Xn; Y), which subsumes all input-output associations including interactions. The resultant summation theorem for the sensitivity measures is an information balance in which the sum equals I(X1,…, Xn; Y). Although in practice only effects of up to third or fourth order can easily be calculated explicitly, the joint impact of all higher order terms is provided by the remaining difference to I(X1,…, Xn; Y). We can therefore assign credit or influence fully to all the parameters of a system over a wide range of operating conditions. 
For all variance-based approaches, the absence of input correlations is a critical prerequisite for the uniqueness of the variance decomposition [8, 9]. As will be demonstrated, in our methodology independent inputs merely simplify the analysis. If input correlations exist (e.g., due to non-orthogonal sampling), their effect can easily be taken into account. We apply the methodology successfully to a model of the NFκB signaling pathway and thereby define how to modify its behaviour to provide a designed maximum effect.
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