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1. Introduction

One issue that can not be ignored in risk assessment is the existence of uncertainties of input parameters. Generally the study of the output uncertainty of a model due to the uncertainties of the model input parameters is called uncertainty analysis (UA), while the determination of the input parameter that most influence the model output is the job of sensitivity analysis (SA). 

Given a model Y=g(X), where Y is the model output of interest, X={X1, X2, …Xn} is the set of input parameters, the traditional way to measure the influence of a input parameter on the output is Sxi=∂Y/∂Xi, which only looks at the importance of a parameter in the neighbourhood of its nominal value. 
It shows poor performance when a model is nonlinear and non-monotonic. To take the full range of an input distribution into consideration, Hora & Iman [1] proposed a variance-based measure Varxi[E(Y|Xi)], which represents the expected reduction of output variance due to the ascertaining of parameter Xi. Homma & Saltelli [2] improved Hora & Iman’s measure further by proposing two sensitivity indicators S1xi=Varxi[E(Y|Xi)]/Var(Y), and STxi=Ex-i[Var(Y|X-i)]/Var(Y).

Variance-based measure might not be robust when, for example, dealing with a highly-skewed or fat-tailed distribution [3]. Iman & Hora [3] proposed a bivariate measure (Rα, R1-α) to calculate the importance of input parameters, Rα=Y*α/Yα, and R1-α= Y*1-α/Y1-α, where Yα, Y1-α represent the α and 1-α quantiles of the unconditional distribution of a model output, Y*α and Y*1-α represent the conditional distribution of this output. Though the pair (Rα, R1-α) provides a wider range of information about the change in output distribution due to a change of input variation, it does not sufficiently reflect the characteristics of the whole output distribution [4]. 


Based on information theory [5], Park & Ahn[4] adopted the discriminator I(i:o)=∫fi(x)Ln[fi(x)/fo(x)]dx to describe the relative impact on the change of the output distribution induced by various distributional changes in the inputs. One criticism of this measure was that the use of data fitting procedures to get the PDFs(Possibility Density Function) fi(x) and fo(x)might bring about additional uncertainty [6].
In addition, Chun, Han and Pak[6] adopted Minkowski distance, which was originally used to measure the distance between two points, to estimate the difference between two CDFs (Cumulative Distribution Function) of the model output. The 2-norm Minkowski distance normalized with the mean of output distribution for the base case is proposed, which is written as
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To calculate I(i:o) and MD(i:o), one needs to assume a change of input distribution, such as uncertainty is completely eliminated and so on. Therefore, the importance ranking based on I(i:o) and MD(i:o) are sensitive to the assumed input distributional change.
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Fig. 1 Difference of F1(y) and F2(y) is measured by Dk-s.
Suppose no change of the distributions of input parameters, Borgonovo [7] proposed a moment independent measure, 
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, which evaluates the influence of the entire input distribution on the entire output distribution. The parameter s(Xi)=∫|fY(y)-fY|Xi(y)|dy, measures the difference between the unconditional and conditional PDFs. Further explanation of δi can be referred to Liu & Homma(this issue).

Given the current distribution of each input parameter, in this work the authors proposed a new measure, which is different from δi, to estimate the influence of input parameters on the model output of interest. 
2. A new sensitivity analysis measure
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Fig. 2 Deviationg of FY|Xi(y) from FY(y) is measured by AXi.

Let FY(y) be the unconditional CDF of the model output Y, and FY|Xi(y) be the CDF of the output Y when an input parameter Xi is fixed at a value, e.g., xi*. In statistical testing, e.g., the Kolmogorov-Smirnov test, we know the difference of two distributions can be measured by the greatest vertical distance of the two curves, Dk-s=sup|FY(y)- FY|Xi(y)|, as shown in Fig. 1. It has been pointed out that two-sided Kolmogorov-Smirnov test based on Dk-s are consistent against all types of differences(e.g. differences between means(or medians), difference in variances) that may exist between two distributions [8]. Intuitively it comes into mind that if the area surrounded by the two curves is adopted to measure the deviation of FY|Xi(y) from FY(y)(see Fig. 2), it will be more meaningful than DK-S. This is the origin of this new measure.
The surrounded area AXi can be calculated as:
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Where Y(α) and YXi(α) is the inverse function of FY(y) and FY|Xi(y), respectively.
If there is no interaction between the two curves, i.e., the difference YXi(α)-Y(α)(or FY(y)-FY|Xi(y))does not change its sign over the entire range of Y, it is known from Eq.(2) that AXi measures the absolute value of the difference of the output expectations in the two different conditions, i.e., AXi=|E(Y|Xi)-E(Y)|, this is the indication of AXi in this case. 

One can easily see that the expected deviation of FY|Xi(y) from FY(y) can be calculated with
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EXi(AXi) can therefore be used to measure the influence of the parameter Xi on the output Y. The normalized expression SXi is employed formally as the sensitivity indicator of Xi.
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Where E(Y) is the expectation of the model output Y given the current distributions of input parameters.
3. Computational method for this measure
For most risk analysis problems, the output distribution can not be preliminarily known. Monte Carlo method is popularly used to obtain the distribution of a model output. To calculate the sensitivity indicator of a given parameter Xi (Suppose the number of samples is n.), one first generates the output distribution FY(y). It can be approximated by the empirical CDF SYn(y), which is easily obtained from Monte Carlo simulation [6]. 
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Where n is the sample size and k is the sample index. The quantiles Y(α)(α=k/n, k=1,2,…n) can easily be obtained from the inverse function of SYn(y).
The expectation of the output Y is then calculated from
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Now we generate a value xi(1) for Xi from its distribution. With other input parameters randomly sampled from their distributions, we can get FY|Xi= xi (1)(y)(approximated by SnY|Xi=xi(1)(y)). Based on Eq.(10), AXi(xi(1))can be obtained. We then generate another value xi(2) for Xi, get FY|Xi=xi(2)(y), and calculate AXi(xi(2)). Repeating the above procedures for n times in total, finally we can estimate SXi
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4. Concluding remarks
In this work a new sensitivity measure, SXi, which considers not only the entire range of input variation, but also the entire range of output distribution, is proposed. Its geometrical meaning is intuitive and physical indication is clear. A Monte Carlo-based computational method is presented to estimate SXi. It is expected that this measure is robust. Further refinement of the computational method for SXi and the comparison of SXi with others measures are in progress.
References

[1] Hora SC, Iman RL: A comparison of Maximum/Bounding and Bayesian/Monte Carlo for fault tree uncertainty analysis. SAND85-2839, Sandia National Laboratories, Albuquerque, New Mexico, 1986.
[2] Homma T, Saltelli A: Importance measures in global sensitivity analysis on nonlinear models. Reliab Eng Sys Saf 52, 1-17(1996)
[3] Iman RL, Hora SC: A robust measure of uncertainty importance for use in fault tree system analysis. Risk Analy 10, 401-406(1990)
[4] Park CK, Ahn KI: A new approach for measuring uncertainty importance and distributional sensitivity in probabilistic safety assessment. Reliab Eng Sys Saf 46, 253-261(1994)
[5] Kullback S: Information theory and statistics. Dover Publications, New York, 1968.

[6] Chun MH, Han SJ, Tak NI: An uncertainty importance measure using a distance metric for the change in a cumulative distribution function. Relia Eng Sys Saf 70, 313-321(2000)
[7] Borgonovo: A new uncertainty importance measure. Reliab Eng Sys Saf, online(2006).
[8] Conover WJ: Practical nonparametric statistics. 2nd Edition, John Wiley&Sons, New York, 1980. 
_1233408441.vsd

_1233408443.vsd

_1233408444.unknown

_1233408442.unknown

_1233408437.unknown

_1233408439.unknown

_1233408440.unknown

_1233408438.unknown

_1233408435.unknown

_1233408436.unknown

_1233408434.unknown

_1233408433.unknown

