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A major part of the systems biology agenda involves the modelling and analysis of biochemical networks [1-5], including their sensitivity analysis [6].  This is typically done as ODE models in environments (such as Gepasi [7-9] and Copasi [10], with the networks encoded and annotated in the Systems Biology Markup Language (www.sbml.org/ and see [11; 12]). Biochemical networks tend to come in two flavours – metabolic (in which there is mass transfer involving chemical change) and informational or signalling (in which there is essentially not). Sensitivity analysis has been popularised in a local form when applied to the former kinds of (metabolic) network as Metabolic Control Analysis [13-15], but has been comparatively little applied to signalling networks.

NF-B is a transcription factor that affects the production of many proteins, and has been implicated in cancer, apoptosis, rheumatoid arthritis and other disease syndromes, and NF-B is therefore part of an important signalling network. We analysed a model of the NF-B system [16; 17] containing some 64 reactions and 23 variables, in which the nuclear concentration of NF-B exhibited damped oscillations and found using local sensitivity analysis that only some 8-9 of these reactions contributed significantly to the oscillations [18]. This enormous decrease in the number of possible pairwise interactions to consider between them (from 642 to 82) allowed us to determine that the sensitivity of appropriate output features to individual reactions could depend even qualitatively (in sign) on the value of other parameters [19], giving weight to the view that biochemical networks must be analysed not just at the level of the individual reaction [20; 21]. As with the positive feedforward loop [2], it seems that downstream events respond not to amplitude but to frequency in this system, thereby solving the problem of crosstalk [4; 17; 22; 23].
Local sensitivity analyses are essentially linear for small amplitude changes in parameters, but clearly these oscillating systems are highly nonlinear. Nevertheless similar conclusions can be drawn from global sensitivity analyses [24; 25].
Any biochemical network can be treated as a ‘communication channel’, and these are usually analysed using the methods of information theory [26; 27]. We have recently shown that the associations between inputs and outputs of such networks can be quantified via a decomposition of their mutual information into different components characterizing the main effect of individual inputs and their interactions [28]. Unlike variance-based approaches to sensitivity analysis (as typically used in both local and global sensitivity analysis), our novel methodology can easily accommodate correlated inputs.
Overall, sensitivity analysis is a major component of the systems biology modelling of biochemical networks, and it is important to develop and apply suites of new tools with which to carry it out. Making these tools available as Web Services [29; 30] will allow one to exploit environments such as Taverna [31-33] for incorporating them into biochemical workflows [4; 5],
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