POLYNOMIAL CHAOS EXPANSIONS for uncertainties quantification anD sensitivity analysis 
Th. Crestaux1*, J.M. Martinez1, O. Le Maître2
1 CEA/DEN/DANS/DM2S Saclay, France; 2Laboratoire LME Evry, France
Thierry.Crestaux@cea.fr
The purpose of the paper is to show that polynomial chaos expansions can be effective in modelling uncertainties and dealing with sensitivity analysis based on the analysis of the variance. We show the connection between Sobol’s decomposition and generalized polynomial chaos expansion for sensitivity estimates for non linear mathematical models.
1. Polynomial Chaos expansions

Polynomial Chaos (PC) expansions are derived from on the original theory of Wiener [1] for the spectral representation of stochastic processes using Gaussian random variables. PC expansions have been used for uncertainty quantification by Ghanem and Spanos [2] and extended by Xiu and Karniadakis [3] to non-Gaussian uncertainty input. Any well-behaved process 
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(e.g. second order process) can be expanded in a convergent (in the mean square sense see Cameron and Martin [4]) series of the form :
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is a set of 
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independent random variables with a known joint density 
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are orthogonal polynomials and 
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are the PC coefficients or stochastic modes of y. Denoting with the brackets “<.>” the expectation operator and taking into account orthogonality of 
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we have :

[image: image9.wmf]>

Y

<

Y

=

-

k

k

k

t

x

y

t

x

y

).

,

(

)

,

(

2

(1)
For practical use, the PC expansions have to be truncated in term of polynomials order. Several approaches can be used to estimate PC coefficients. The first is based on Galerkin projection of the model equations, leading to a set of coupled equations for the coefficients
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. This approach requires an adaptation of deterministic solvers. Opposing approaches, of simpler implementation, are based on Monte-Carlo simulations or quadrature formulas to evaluate PC coefficients from equation (1), see for instance Le Maître et al [5]. When the number d of variables is large, quadrature formulas based on tensor product of 1D formulas, requires too many numerical evaluations and sparse grids integration based on Smolyak’s constructions [6] are preferred. PC coefficients are therefore evaluated from a set 
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of points and weights by formulas of the form 
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The projection on the PC basis results in a surrogate model approximating the numerical model of uncertainties :
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The mean and the variance are derived from the PC expansion respectively by the first coefficient
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.  Fractiles can also be calculated by Monte-Carlo simulations of the PC surrogate model.

2. Sensitivity analysis from PC expansions
Now, we consider the global analysis, like named in Saltelli et al [7] based on analysis of variance and we use Antoniadis’s notations [8]. To simplify notations, let us consider a random variable and a Sobol-like decomposition of a PC expansion of y :
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where
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gathers the terms of the PC expansion which depend only of the components of 
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. Let us note 
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the subset of the set of indexes 
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Taking into account orthogonality of 
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, we have :
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and we obtain the ANOVA decomposition and the Sobol’s sensitivity indices :
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We have applied PC expansion to two classical test using Petras’s toolbox [9] for sparse numerical quadrature. 
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The figures show absolute error of sobol indices according to the number of evaluations of the numerical model, Homma-Saltelli model (left) :
[image: image30.wmf](

)

p

p

x

x

x

x

x

,

,

1

.

0

,

7

),

sin(

)

(

sin

)

sin(

1

4

3

2

2

1

-

»

=

=

+

+

U

b

a

b

a

i

 and Saltelli-Sobol model (right) :
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. We can observe that the error decreases in 
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 for MC simulations. PC requires less numerical evaluations than MC simulations. Nevertheless, the difference in efficiency PC-MC reduces when the stochastic dimensions increases. Current efforts focus on the construction of sparse grids and adaptive methods to improve the precision on the integral evaluations and improve the convergence of PC expansions [10].
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