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A considerable amount of information is lost when the mean and variance of a dependent variable is calculated from a random sample. Considering a general model f with k independent input factors Y = f (X1,X2, · · ·Xk), when the appropriate sampling strategy is adopted, the sophisticated variance-based methods are very efficient in inferring how the variance of the output Y can be quantitatively apportioned to the different independent variables. However, the multidimensional averaging characterizing global sensitivity analysis methods provide only part of the information available from the mapping between the input factors and the response of interest. In fact, for a given input factor Xj, it is not possible to assess how a specific quantile of this variable contributes or fails to contribute to the mean and variance of the Y. In this paper the contribution of Xj is also decomposed across its range and provides useful information for a number of settings related to Global Sensitivity Analysis (factor mapping, factor prioritization and factor fixing).

In the radioactive waste management framework, Sinclair [1] investigated the way infinitesimal changes to the probability density function (PDF) of an input factor Xj can alter overall features of performance (mean and variance of Y). The marginal dependence of E(Y) on the various input factors was employed and portrayed graphically. Nevertheless, Sinclair considered his ‘sensitivity plot’, as he called it, as a useful graphic tool for estimating sensitivity ‘by eye’ [1]. This study has three objectives: The first one is to extend the idea behind the contribution to the sample mean plot to the variance, developing also the contribution to the sample variance plot, the second one is to develop statistical tests for both plots, the third one is to extend Sinclair’s qualitative assessment of parameter sensitivities to quantitative sensitivity measures for the mean and variance of the model response Y.

Let us consider that a Monte Carlo sample S of size N is generated for the inputs and that the corresponding model response Y is also estimated. Let us also consider that the sampling technique used doesn’t introduce any bias, as for example random sampling or proportional stratified sampling. In order to build both plots for a given input variable, let us say X1, and the response Y, firstly we sort the realisations of X1, generating the series of values 
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. Auxiliary variables M and V are defined, whose sampled values are obtained from the sampled values of Y in the order defined by X1 as
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which are further normalised being divided by the sample mean and the sample variance respectively. Then, they are plotted versus the cumulative distribution function of X1. So, the contribution to the sample mean plot is the plot of the normalised values mi versus FX1(x1) and the contribution to the variance plot is the plot of the normalised values vi versus FX1(x1).

Plotting FX1(x1) in the x axis means that equal lengths represent approximately regions of equal probability of the input variable. The more the plot deviates from the diagonal in a given region, the more that region of the input variable contributes to the sample mean or the sample variance. In fact, non-important input variables produce plots close to the diagonal, since large and small output values can be equally found in any of their regions. 

These plots provide a qualitative view of the importance of the input variable considered, nevertheless, it is important to be able to measure how important, how statistically significant, is its departure from the diagonal. This task needs the help of a statistical test.

In order to set up a test we need to define a null hypothesis and a measure of discrepancy with the null hypothesis. The null hypotheis is the ‘non-importance’ of the input variable considered, and we will interpret ‘non-importance’ in statistical terms as a random assignation of output values to the inputs. So, if the output values seem to be randomly assigned to the values of a given input variable, we will consider that the different parts of that input variable contribute approximately equally to the output variable sample mean, so that it will be considered as a non-important effect on the output variable.

As a measure of discrepancy with the null hypothesis we consider the maximum distance between the contribution to the sample mean plot and the diagonal (same for the contribution to the sample variance). This measure of discrepancy with the null hypothesis is a reasonable one since lack of random association between inputs and outputs will produce departures from the diagonal.

The next step is the computation of the distribution of the measure of discrepancy under the null hypothesis and the design of the corresponding decision rule. With this purpose, a permutation test [2] has been set up. This test is specific for each output variable given that the distribution under the null hypothesis depends on its values. So, we proceed as follows: we generate a large number of permutations of the set of sampled output variable values, say 104, then we produce a plot for each random permutation, so that we get a ‘cloud’ of plots that could be obtained under random conditions. For each plot the maximum distance (absolute value) between the curve and the diagonal is computed. Using order statistics, we estimate the different quantiles of the random variable ‘maximum distance between the curve and the diagonal’. In order to perform a test, we choose a test significance level and select the appropriate value of the maximum distances above which we reject the null hypothesis. Figure 1 shows an example of contribution to the mean plots. The red lines provide the 99% band. Under random conditions only 1% of the curves generated have at least one point outside the band contained within the two red lines. W and V1 are quite relevant parameters while T and K are not. While this conclusion cannot be inferred from the classic scatter plots visualization, the proposed representation gives an added value with respect to the sensitivity assessment. The value of the statistics ‘maximum distance between the curve and the diagonal’ can approximately be considered as a measure of importance of a given parameter.
[image: image4.jpg]Fraction of the sample mean

0.9

&
[

o
g

2
2

=
3

o
=

=)
w

&
)

0.1

Contribution to the sample mean plot

Diagonal
—— 99% upper band limit
—— 99% lower band limit

03 0.4 0.5 0.6 0.7 0.8 0.9 1
CDFy




Figure 1.- Contribution to the mean plot for four input variables in a radioactive waste management model. The null hypothesis is rejected for parameters whose curves lie out of the 99% band, identifying them as important parameters.
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