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The small random disturbances of nonlinear  dynamical system can decisively affect its behavior and lead to rich variety of regimes. Consider stochastic system 
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 . Here y is n-dimensional vector,  f   is vector-function, (  is real parameter, ( is  n-dimensional standard Wiener process, (  is n x n – matrix disturbances function, ( is a small parameter (noise intensity). The most general probabilistic description of  this forced  system is given by the Kolmogorov-Fokker-Planck equation.  As a rule the main interest is connected with the regime of stochastic auto-oscillations steadied in dynamic system. Analytical research of stationary distribution density ((y,() is possible only for 1-dimensional dynamical systems and in some infrequent cases for 2-dimensional systems. For 3-dimensional systems the construction of numerical solution of  Kolmogorov-Fokker-Planck equation is connected with significant computational difficulties.

The case of steady rest point is widely discussed in the literature for stochastic dynamics and is fundamentally developed. The main attention in presented paper is devoted to the limit cycle. It is supposed that the deterministic system
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has T-periodical solution ((t) with corresponding exponentially stable phase curve (cycle ().  It means that value of deviation ((y) of the forced trajectory state y from the cycle ( tends exponentially to zero as time increases. External random perturbations force the trajectory of dynamical system to leave the deterministic orbit and form some stochastic bundle around it. Empirical study of cycle stochastic sensitivity based on direct numerical simulations is very difficult due to considerable time consumption and computational resources. 

1. Stochastic sensitivity function

In presented work, the method based on quasipotential function 
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is given. This function is an asymptotic of stationary density ((y,(). Qausipotential has been actively used in last years for stochastic dynamics problems research and appeared in papers of  Wentzell A.D. and Freidlin M.I. [1]. With the help of first approximation of quasipotential v(y) in a small vicinity of cycle ( the stationary density can be written in following form of normal distribution [2, 3]:
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where “+” means pseudo-inversion. Function ((() is so-called stochastic sensitivity function (SSF). SSF characterizes a dispersion of the intersection  points of random trajectories  with hyperplane orthogonal to cycle ( at the point ( ( (. SSF describes a sensitivity of the cycle to the small random disturbances. Using SSF one can successfully research different phenomena connected with the influence of random perturbations on the limit cycle without empirical modeling. 

The stochastic sensitivity matrix ((() is singular  (all distribution points are concentrated in one hyperplane). It is convenient to search for a function ((()  in parametrical  form. The solution ((t) connecting the points of cycle ( with points of an interval [0, T)  gives the  natural parametrization ((((t)) = W(t). Then the following system, consisting of linear matrix differential Lyapunov equation and two corresponding conditions, can be written as
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This system has an unique solution [2, 3]. Corresponding numerical algorithms for calculating of this solution were suggested in [3]. 

Let us consider the three-dimensional case (n = 3). Then spectral decomposition of SSF can be written in the following form: 
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, where (1, (2 are eigenvalues and v1, v2  are corresponding normalized eigenvectors of  matrix W(t). Scalar analysis of  3D-cycle stochastic sensitivity is based on research of two scalar functions (1(t) and (2(t).

2. Geometrical description of 3D-cycle stochastic sensitivity

The constructive way for complete description of cycle stochastic sensitivity is the following. Eigenvalues (1, (2 and corresponding normalized eigenvectors v1, v2 of matrix W(t) specify in normal plane ((t) (build in some point on the cycle orbit) some confidence ellipse Y(t).  This ellipse with some chosen value of  fiducial probability defines  in plane ((t) a confidence domain for intersection points of stochastic bundle. These ellipses specify on  the system phase space around the cycle some torus , which defines a  confidence domain for stochastic cycle. 

This torus  plays  a role of a simple 3D-model for  stochastic cycle. Visualization of this torus gives detailed and evident description of  stochastic cycle orientation and form and fully characterizes its stochastic sensitivity. In the paper, the following algorithm for constructing of confidence torus is presented: 

· value of SSF is calculated for each of  base points. Using eigenvalues (1, (2 and eigenvectors v1, v2 of SSF matrix confident ellipse Y is constructed;

· base points on ellipses are chosen; 

· with the help of triangulation the carcass of torus is constructed. Triangles apexes are base points of ellipses. Using normal vectors to triangles directing vectors to each apex are build;

· torus carcass and directing vectors are used to create the 3D-scene image. Realized numerical algorithm of enveloping of torus surface relies on implementation of graphic library OpenGL and uses Gouraud smooth shading method.

3. Stochastic sensitivity analysis of Roessler system

Method of stochastic sensitivity analysis based on SSF was applied for researching different 2-dimensional and 3-dimensional dynamic models [2 - 4]. In this paper analysis for stochastically forced Roessler system 
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is demonstrated . Here  ( = 0.2 , ( ( (0.4 ; 4.2) .

The designated parameter interval is period doubling bifurcation zone for Roessler system. While parameter ( changes on this interval, stable limit cycles double their period. At ((4.2 system changes its state and undergoes from order to chaos.

Deterministic cycles of Roessler system and random trajectory bundles around them are examined. With the help of SSF the stochastic sensitivity of cycles is researched in details. Scalar analysis is performed. Good coincidence with results, based on direct numerical simulation, is achieved. An exponential growth of stochastic sensitivity for period doubling bifurcation zone is found. The value of growth coefficient is obtained. For some different values of parameter ( confidence tori are built to demonstrate the possibilities of geometrical description of stochastic sensitivity. The modeling of Roessler system torus under raising of noise intensity is performed.

Achieved results show that SSF is a useful analytical tool in researching thin phenomena observed in stochastically forced systems with limit cycles. Geometrical description of stochastic cycle sensitivity is demonstrated.
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